Helical spring


This script does the following:

  • Presents the user with a dialog of inputs
  • Generates a 3D sketch profile of a helical spring shape that can be used as a path for a Sweep Boss
    • The script does not generate 3D geometry - it only generates the 3D Sketch that can be used for a Sweep Boss
  • Presents a sample of how to use equations to plot the path of a 3D curve


import sys
import math
 
# create dialog window
Win = Windows()
Options = []
Options.append(['Angle Increment', WindowsInputTypes.Real, 0.05])
Options.append(['Loop Scale', WindowsInputTypes.Real, 0.8])
Options.append(['Height Scale', WindowsInputTypes.Real, 1.0])
Options.append(['Major Helix Width Scale', WindowsInputTypes.Real, 2.0])
Options.append(['Turn Density', WindowsInputTypes.Integer, 25])
 
# show dialog window and get values
Values = Win.OptionsDialog('Everyone Loves a Slinky', Options)
if Values == None:
  sys.exit('User cancelled')
 
AngleIncrement = Values[0]
LoopScale = Values[1]
HeightScale = Values[2]
WidthScale = Values[3]
TurnDensity = Values[4]
print 'Angle Increment = %f' % AngleIncrement
print 'Loop Scale = %f' % LoopScale
print 'Height Scale = %f' % HeightScale
print 'Width Scale = %f' % WidthScale
print 'Turn Density = %d' % TurnDensity
 
# create list of points for 3d sketch
Points = []
Angle = 0.0
for Pass in range(0, 437):
  X = (WidthScale + LoopScale * math.cos(Angle * TurnDensity)) * math.cos(Angle)
  Y = (WidthScale + LoopScale * math.cos(Angle * TurnDensity)) * math.sin(Angle)
  Z = HeightScale * Angle + LoopScale * math.sin(Angle * TurnDensity)
  Points.extend([X, Y, Z])
  Angle += AngleIncrement
 
# create part and add 3d sketch
Slinky = Part('Slinky')
Path = Slinky.Add3DSketch('Path')
Path.AddBspline(Points)


Did you find it helpful? Yes No

Send feedback
Sorry we couldn't be helpful. Help us improve this article with your feedback.